Heat transport across graphene/hexagonal-BN tilted grain boundaries from phase-field crystal model and molecular dynamics simulations
نویسندگان
چکیده
We study the interfacial thermal conductance of grain boundaries (GBs) between monolayer graphene and hexagonal boron nitride (h-BN) sheets using a combined atomistic approach. First, realistic samples containing graphene/h-BN GBs with different tilt angles are generated phase-field crystal model developed recently [P. Hirvonen et al., Phys. Rev. B 100, 165412 (2019)] that captures slow diffusive relaxation inaccessible to molecular dynamics (MD) simulations. Then, large-scale MD simulations efficient GPUMD package performed assess heat transport rectification properties across GBs. find lattice mismatch h-BN plays less important role in determining as compared angle. In addition, we no significant effects for these
منابع مشابه
Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations.
We have studied the thermal conductance of tilt grain boundaries in graphene using nonequilibrium molecular dynamics simulations. When a constant heat flux is allowed to flow, we observe sharp jumps in temperature at the boundaries, characteristic of interfaces between materials of differing thermal properties. On the basis of the magnitude of these jumps, we have computed the boundary conducta...
متن کاملBallistic-diffusive Phonon Heat Transport across Grain Boundaries
The propagation of a heat pulse in a single crystal and across grain boundaries (GBs) is simulated using a concurrent atomistic-continuum method furnished with a coherent phonon pulse model. With a heat pulse constructed based on a Bose-Einstein distribution of phonons, this work has reproduced the phenomenon of phonon focusing in single and polycrystalline materials. Simulation results provide...
متن کاملMelting at dislocations and grain boundaries: A phase field crystal study
Dislocation and grain-boundary melting are studied in three dimensions using the phase field crystal method. Isolated dislocations are found to melt radially outward from their core, as the localized excess elastic energy drives a power-law divergence in the melt radius. Dislocations within low angle to intermediate angle grain boundaries melt similarly until an angle-dependent first-order wett...
متن کاملTailoring electrical transport across grain boundaries in polycrystalline graphene.
Graphene produced by chemical vapor deposition (CVD) is polycrystalline, and scattering of charge carriers at grain boundaries (GBs) could degrade its performance relative to exfoliated, single-crystal graphene. However, the electrical properties of GBs have so far been addressed indirectly without simultaneous knowledge of their locations and structures. We present electrical measurements on i...
متن کاملMisorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries
Grain boundaries in monolayer transition metal dichalcogenides have unique atomic defect structures and band dispersion relations that depend on the inter-domain misorientation angle. Here, we explore misorientation angle-dependent electrical transport at grain boundaries in monolayer MoS2 by correlating the atomic defect structures of measured devices analysed with transmission electron micros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2021
ISSN: ['1089-7550', '0021-8979', '1520-8850']
DOI: https://doi.org/10.1063/5.0069134